

Breeding a sustainable Jersey for Africa

Dr Bernice E Mostert SA Stud Book

Cows differ in ability to cope with environmental disturbances:

- Pathogens
- Heat waves
- Feed composition
- Feed quantity

Resilience : Capacity to respond and overcome disturbances Safeguard ability to contribute genes to the next generation Renders sustainability to the breed for long-term survival

The "Silent" Cow

- Completing multiple lactations
- Exhibit good productive and reproductive performance
- Face few health problems that are easily overcome
- Efficient and consistent in their milk production

Improvement of Resilience

Improves on-farm productivity

Improves animal health

Improves welfare of the animals

Reduces environmental impacts

Reduces need for antibiotic and medicinal intervention

Easy to manage and healthy herds

Improvement of milk yield for many decades

Focus of Selection and Breeding

Deterioration in solid percentages, health, fertility, udders, feet & leg traits, longevity

Total merit indices now also include fertility, disease resistance, conformation traits, efficiency, calving traits, survival

CAN + NLD : Resistance to heat stress

Research on adaptive changes of cows to variation in feed & forage - affects productivity and fertility

Precise insights in cow behaviour, health and activity

Precision Livestock Farming Technology

More effective management of herds

Diagnosing and treating cows quicker

Keeping costs down

Signalling insemination times

Supports improved health, productivity and fertility aiding in the sustainability of populations

A sustainable Jersey for Africa Impaired resilience negatively impacts reproductive performance

Ability of cow to re-calve is validation of resilience

- Calving events
- Age at first calving
- Inter-calving Period
- Number of inseminations of last lactation
- Penalizations for curative treatments
- Penalizations for each day culled before 100 days in milk

Lifetime Resilience Score

A sustainable Jersey for Africa Impaired resilience negatively impacts reproductive performance

Ability of cow to re-calve is validation of resilience

- Calving events
- Age at first calving
- **Birth Notifications**
- Inter-calving Period
- Number of inseminations of last lactation
- Penalizations for curative treatments
- Penalizations for each day culled before 100 days in milk

Farm Software info pipelined to SA Stud Book

Ç

A sustainable Jersey for Africa Variance of daily milk yield

Shows response to environmental disturbances

Cows with lower variance – better udder health, less ketosis, better longevity

Heritability of 0.20 – 0.24 : selection response expected

Favorable genetic correlations with functional traits

Information Available to SA Breeders

Herd Management Reports

LOGIX-Profit through genetics

Herd Overview

LOGIX-Profit through genetics

Dottad-line circles represents the average for the last I2 months; coloured circles represents the average for the last 6 weeks (days to first heat, insemination and conception, ICP and lactation length), or last test (DIM and Milk Production).

Heifers: Older than 2 Years

	Farm Number	Age (months)	Last Insemi- nation	Insens Nr	Pregnant?	Exp. Calving Date
	Heifers aged	between 2 and	3 years			
1	20266	34.8	2022-07-22	2	~	2023-05-01
2	20343	33.6	2022-07-22	z	~	2023-05-01
3.	20397	32.7	2022-09-27	2	*	
4	20450	32	2022-07-24	Z	V	2023-05-03
5	20461	31.8	2022-09-12	2	~	2023-06-22
6.	20574	30.2	2022-02-23	1	~	2022-12-03
7.	20584	30	2022-07-13	1	~	2023-04-22
8.	20590	29.9	2023-01-19	3	~	2023-10-29
9	20619	29.3	2023-01-06	3	7	
10.	20675	28	2022-05-20	Z	*	2023-02-27
11.	21010	27.7				
12	21020	27.5				

Action Lists

Ready for PDs

All cows and heiters that were internitiated atteast 32 days ago.

HEIFERS

	Faint Number	Age Into	Prev. PD	Last Insemination	Days since insem	lisem Nr	Lost Bull	Program	Open	Gul
t	21596	16.3		2023-03-25	32	1	NA	13		D
2.	21583	16.6		2023-03-25	32	1	NÅ			E
а.	21575	16.8		2023-03-24	33	t	NA.			D
4	22012	15.5		2023-03-22	35	1 I	NA		E1.	
5	21589	16.4		2023-03-22	35	1	NA.			E
6.	21598	16.2		2023-03-22	35	1	NA.			
7.	21994	16.4		2023-03-20	32	1	NA.			
8	21587	16.5		2023-03-18	39	1	NA.	<u> </u>		
9.	2588	16.4		2023-03-17	40	t	NA			D
ü.	21586	16.5		2023-03-17	40	1	NA.			1
11.	2(573	16.9		2023-03-15	42	1	NA:			

Cows: Not Inseminated

All uninseminated cows beyond 100 DIM.

Change in cow weight/BCS, when available, is calculated as the difference between the average for the last 2 weeks and 2 weeks prior to that.

	Farm Number	Parity	Call Date	DM :	Weight Change (kg)	BCS Change	24h Milk Prod (kg)
1	18424	3	2023-01-15	100	9		38.2
2	20662	1	2023-01-15	101	- 11 🔻		15.1
3.	20427	1	2023-01-15	101	- 10 🔻		16.6
4.	19626	2	2023-01-13	102	0		20.7
5.	17301	4	2023-01-12	104	- 20 🔻		31.7
б.	18647	3	2023-01-08	108	4		31.3
7.	18488	3	2023-01-08	108	+16 🛦		30.2
8	20634	- 1	2023-01-06	109	5		22

Action Lists

Cows: >55d Dry

All cows more than 55 days dry. Days to expected calving date, where available, is calculated as 283 days after last conception days.

	Farm	Lác	tation	305d Mik	10.000	Last Inse	mination	Last PD /	Days to
	Number	Nr	Length	Prod (kg)	Days Dry	Days	Ne	Abortion	Calving
1	14116	6	400	8349	56	271	2	2022-09-20 🖌	12
2	18018	3	360	6 5 5 5	56	270	4	2022-09-20 🖌	13
3	15354	5	350	7399	56	271	4	2022-09-20 🖌	12
4.	18084	3	294	6237	56	271	1	2022-09-20 🗸	12
5.	14479	6	313	6791	56	270	2	2022-09-20 🗸	13
б.	18149	3	325	6738	56	270	2	2022-09-20 🗸	13
7.	18090	3	338	7249	56	270	2	2022-09-20 🖌	13
8.	18055	3	293	6933	56	270	1	2022-09-20 🖌	13

Cows: Long ICP

All cows with a previous ICP of 500 days or more. For cows that are pregnant, the expected ICP is calculated as days at last conception plus 283 days.

	Farm Number	Parity	Prev Lact. Date	Current Lact. Date	Last ICP	Prev Lact. Length	Prev. Days Dry	Expected ICP
1.	18486	2	2020-09-25	2022-02-08	501	441	60	457
2.	19088	3	2021-12-02	2023-04-18	502	438	64	
З.	18158	3	2021-05-05	2022-09-19	502	430	72	
4.	18082	3	2021-04-23	2022-09-07	502	421	81	446
5.	18012	3	2021-05-20	2022-10-06	503	433	71	
6.	17055	4	2021-07-06	2022-11-21	503	435	68	379
7.	19183	2	2021-05-15	2022-10-02	504	445	60	412
8.	18614	2	2021-03-20	2022-08-08	506	441	65	357
9.	18450	3	2021-09-16	2023-02-07	508	420	89	
10.	17003	4	2021-02-22	2022-07-16	509	441	68	478

LOGIX-Profit through genetics

Cows: Under Pressure

Cows under pressure: these cows have an SCC above 500 and Lactose % below 4.6 on 12 Apr 2023.

Repeat cases are indicated with a . and chronic cases with a

		Farm	Lac	tation	24h Milk F	roduction	Produ	uction
		Number	Nr	DIM	Prev. Week	Test Week	Lactose (%)	55C (x1000
	1.	10066	3	19	18.6	20.7	4.6	531
•	2.	11080	3	204	7.3	14	4.0	1388
•	З.	11163	3	102	18.7	18.9	4.3	2409
	4.	11383	3	254	10.7	7.6	3.4	1507
	5.	11449	3	90	з	16.8	4.5	1464
•	б.	12006	3	257	11.3	6.3	4.2	554
	7.	12120	3	148	23.1	18	4.5	566
	8.	12125	3	244	15.8	12.9	4.3	3 316
	9.	12154	3	324	2	3.4	4.2	517

LOGIX-Profit through genetics

Cows: Possible Acidosis

Possible cases of low butterfat; cows with a Butterfat to Protein ration below 1 on 12 Apr 2023.

Repeat cases are indicated with a . and chronic cases with a .

	Farm	Lactation		24h Milk F	roduction	Sol	ids	Prot vs BF
	Number	Nr	DIM	Prev. Week	Test Week	Butterfat (%)	Protein (%)	Ratio
1.	16322	3	130	38.2	35.5	3.2	4.1	0.77
2.	18176	3	143	14.6	17.4	3.8	4,1	0.92
3.	16483	3	89	29.6	34.9	3.6	3.7	0.98
4.	20401	1	205	14.1	19.6	4.2	4.3	0.99
5.	19554	2	120	28.7	21.7	4.2	4.2	1.00

16541

16197

9.

3

3

58

18

33.5

32.5

Cows: Possible Ketosis Assist producers to act timeously and ensure sustainability of the herds 1. 2. 3. JJ./ 20614 49 23.3 22 5.7 3.8 1.48 4. 17638 3 78 34.7 29.6 5.4 3.6 1.48 16437 36.8 5.1 3.4 1.48 3 33 39.7 14164 3.2 3 76 30.6 35.3 4.8 1.48

LOGIX-Profit through genetics

33.5

30.6

5.0

6.2

3.4

4.2

1.48

1.49

Information Available to SA Breeders

Genetic Herd Reports & www.SADAIRYBULLS.com

LOGIX-Profit through genetics

SADAIRYBULLS.com

	Genomic Info	ormation	
-	-	Breed Relatedness:	100 %
Genomic Parentage Verification		Level of Homozygosity:	26.22 %
-	1-1	A2 Milk:	A2A2
Polledness (Dellic):	н	Jersey Haplatype 1:	- 1 C
BLAD:	0	OUNPS:	
DGAT1:	1	Yellow Milk Ful:	
Weaver Syndrome:	0		

Genomic Breeding Information for GLYNTON LANDO WAVE

NAAB Number: -8.A. Reg Number: 0092204833 Birth Date: 2021-08-05 International Number: JERZAFM000092204833

Genetic Information

A sustainable Jersey for Africa

SA has an established RefPopulation for Jersey Single-Step GBLUP GE running since 2020 GEBVs and Gindices – accurate selection Single Gene traits :

Beneficial:

- Beta & Kappa Casein
- DGAT1
- ABCG2
- Horns/Polled

Unwanted / Lethal genetic disorders:

- Mulefoot
- Weaver Syndrome
- Jersey Haplotype 1
 Genome Wide Association Studies

Genetic Information

A sustainable Jersey for Africa

Genetic Efficiency Index

Indicator of adaptability and resilience of SA Jersey population

Accurate ranking of cows with regards to production of dense milk *versus* body size

Data needed :

- Official milk recording: Milk, Bfat & Prot yields
- Linear Scores for BWC (Breed Society)
- Cow weights (farm software)

A sustainable Jersey for Africa

The Genetic Efficiency Index

Ample variation available for genetic improvement

		BREE	DING VAL	INDICES				
Cow	Milk	Bfat	Prot	Bfat%	Prot%	Dense	Body Weight	Efficiency
						Yield	Composite	
Α	-532	2.7	-11.8	0.56	0.16	104	120	81
В	-244	6.0	0.0	0.33	0.16	106	107	100
С	108	30.2	16.1	0.41	0.20	120	104	128

Managing Inbreeding

- SA Jersey population moved from TMR to more pasture based
- Breeding Objective already adapted to focus on more capacity to process forages efficiently, as well as sound feet & leg traits
- Medium frame with capacity makes them better adapted to SA's warm climate compared to the larger framed dairy breeds

Sustainability of SA Jersey assisted by:

✓ Faster genetic gain by using GEBVs and Gindices
 ✓ Inclusion of Efficiency in Breeding Objectives
 ✓ Precision breeding for milk quality traits
 ✓ Eradication of unwanted genes from the population
 ✓ Managing rate and level of inbreeding in herds

TO CONCLUDE

Surviving in a changing environment is a reality

Informed decision-making based on data and scientific evidence are essential

Breeders need to contribute phenotypes and genotypes of their animals to the SA database

This will allow for applied research and support to sustain the future of the Jersey breed in Africa

OGIX-Profit through genetics

Thank You!!!

The second

LOGIN

LØGIX